

Precision Digital Presents

The Fundamentals of 4-20 mA Current Loops

Webinar Organizers

Joe Ryan **Product Manager Precision Digital** Corporation

Ryan Shea **Applications Specialist Precision Digital** Corporation

Bruce McDuffee Webinar Moderator **Precision Digital** Corporation

Objectives & Takeaways

Understand the fundamentals of 4-20 mA current loops

Be able to choose the correct devices and instruments

Is the 4-20mA current loop right for your situation?

Agenda

Definition of the 4-20mA current loop

Description of the components that make up the 4-20 mA loop

Pros and cons of the 4-20 mA current loop

Essentials you need to know about the 4-20 mA current loop.

Getting to know you.

- Where are you located?
- What is your industry?
- What is your level of expertise?

What is the 4-20 mA current loop?

Basic Current Loop

- Vtot = Power Supply
- Multiple Resistances/Loads (R1, R2, R3
- Multiple Voltage Drops (V1, V2, V3)
- Current the Same Everywhere

Flow Analogy

- Voltage => Pressure
- Loads => Flow Restrictions
- Current = Flow

A little bit of history...

- First appeared in process environments in the 1950s
- Influenced by the previously most common control signal – compressed air [using 3 to 15psi as the signal range]
- A true '0' is not practical
- The industry specification for Compatibility of Analog Signal for Electronic Industrial Process Instruments is ISA 50.00.01-1975 (R2012)

What is the 4-20 mA current loop?

Here's how it works...

Components – The Sensor

- Measures the actual parameter; temperature, flow, pressure, etc.
- Some sensors output a voltage proportional to the level of the parameter being measure. Difficult to use directly due to issues such as noise, cable length, etc.
- Others are unusable due to signal complexity, such as radar level readings, optical encoders, low signal mV pulses

Components – The Transmitter

- Converts the variable signal from the sensor to a current
- The current output by the transmitter is proportional to the parameter being measured
 - 4 mA represents the 0% measurement
 - 20 mA represents a 100% measurement

Scaling Example:

Linear Scaling (2 Point) for a 100 foot level transmitter.

Scale Pt	Input Value (mA)	Parameter (ft)
1	4.00	0
2	20.00	100 ft

Components – The Power Supply

- DC power only (usually 24VDC)
- Commonly 9, 12, 15 or 36V DC
- Must be at least higher than the sum of
 - Maximum required for transmitter
 - IR drop in all receivers
 - IR drop in wire

In most installations, power is built in to transmitter or receiver

Components – The Receiver

- Receives the current signal
- Internally converts the current back to a voltage with a sense resistor, and processes the signal with electronics and/or a microcontroller
- Often provides visual information to the operator
- Can provide an additional output for a remote display, actuator valve, speed controller, PLC, etc.

Components – The Wire

Wire AWG	DIAMETER (mils)	OHMS Per 1000 Feet
10	101.90	1.018
12	80.80	1.619
14	64.10	2.575
16	50.80	4.094
18	40.30	6.510
20	32.00	10.35
22	25.30	16.46
24	20.10	26.17
26	15.90	41.62
28	12.60	66.17
30	10.00	105.2
32	8.00	167.3
34	6.30	266
36	5.00	423
38	3.97	673
40	3.14	1070

- Wire will add resistance to the loop at long distances (well over 1000')
- Wire resistance and voltage drop is negligible for short distances
- Could affect voltage signal accuracy over long distances
- Current is identical throughout the loop, so this will not affect accuracy of the 4-20 mA signal

Getting to know you.

What is your primary application?

Questions

 Please enter your questions in the 'Questions' window – on the tab at the bottom of your control panel on the right side of your screen.

Pros and Cons of 4-20mA Current Loop

- Simple to wire and configure
- Uses less wire and connections reduce installation costs
- Longer distances are OK without losing signal as opposed to voltage output signals
- Low sensitivity to electrical noise
- Easy to detect loss of signal or power

- One parameter transmission
- Susceptibility to ground loops
- Isolation requirements

Essentials You Need to Know

Is it right for you?

 It's the Industrial standard

Considerations when choosing your devices

- Loop drop/power options
- Isolation
- Number of parameters

When you cannot use 4-20 mA

 Pulse, temperature or pressure devices without additional transmitters

Summary

Definition of the 4-20mA current loop

Description of the components that make up the 4-20 mA loop

Pros and cons of the 4-20 mA current loop

Essentials you need to know about the 4-20 mA current loop.

Getting to know you

How often do you specify digital displays?

Q & A

- Please enter your questions in the 'Questions' window – on the tab at the bottom of your control panel on the right side of your screen.
- Apologies if we do not get to your question today. We'll contact you offline with a response as soon as possible.

Next webinar – November 18

Loop-Powered Meters, the Fundamentals

An introductory class for those who have to deal with two-wire loop powered meters and other devices, but are not electrical engineers. After attending this webinar:

- 1. Understand the key criteria for using or specifying a loop-powered device
- 2. Know if a loop-powered device is qualified for your application
- 3. Be able to decide if loop-power is your best choice

Precision Digital

Helping you become more proficient with process signals connections and communications.

Your source for:

- Loop-Powered Meters
- Digital Panel Meters
- Explosion-Proof Instruments
- Large Display Meters
- And more

For more information

thank you